
PROYECTO FIN DE CARRERA

T́ıtulo: Desarrollo de una interfaz gráfica de usuario para simulación

social de planes de evacuación basada en BML

T́ıtulo (inglés): Development of a graphical user interface for social simula-

tion of evacuation plans based on BML

Autor: Antonio Maria Diaz Dominguez

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Mercedes Garijo Ayestarán

Vocal: Tomás Robles Valladares

Secretario: Carlos Ángel Iglesias Fernández

Suplente: Francisco González Vidal

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE

INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos

Grupo de Sistemas Inteligentes

PROYECTO FIN DE CARRERA

Development of a Graphical User Interface

for Social Simulation of
Evacuation Plans Based on BML

Antonio Maria Diaz Dominguez

Marzo de 2016

Resumen

Esta documento es el resultado de un proyecto que tiene como objetivo realizar una interfaz

gráfica para un simulador de evacuación de edificios, llamada SmartSim.

La interfaz permite realizar una simulación dadas una serie de posiciones iniciales de

agentes y un escenario en donde tiene lugar la simulación. El programa calcula las rutas de

evacuación del edificio propuesto y representa la evacuación.

Se han desarrollado varios casos de uso o simuladores para explotar las capacidades

del programa. Cada uno de estos simuladores poseen varias opciones de configuración y

de extracción de resultados. El objetivo de incluir estas opciones es facilitar el uso del

programa por parte de un usuario no experimentado en tareas de programación.

La arquitectura del proyecto se ha estructurado en módulos para permitir el intercambio

de cada uno de estos módulos en usos futuros.

Por último, se han presentado las conclusiones extráıdas del trabajo, las posibles ĺıneas de

continuación del proyecto, aśı como los siguientes pasos en cuanto a desarrollo y aprovechamiento

del programa.

Palabras clave: Social Simulation, UbikSim, SmartBody, Behavior Markup Lan-

guage, BML, Python, Evacuation Plan, Ambient Intelligence, Multi-agent Based Simu-

lation, Graphical User Interface

V

Abstract

This document is the result of a project which objective is to develop a graphic interface

for an evacuation plans simulator, the SmartSim project.

The interface allows to create a simulation given the initial positions for agents and the

scenario in which the simulation takes place. The program calculates the evacuation plan

of the building and represents the simulation.

Some use cases or simulators have been developed to take advantage of the program

capacities. Every one of these simulators can be configured with many options. Also many

options of retrieving the results have been provided. The objective of including these options

is easing the program usage by a non-experimented user.

The project architecture has been structured in modules in order to allow the change of

any of these modules in future developments.

Finally, we gather the extracted conclusions plus some lessons learnt, the possible line

of work regarding the continuance of the platform as well as the next step regarding devel-

opment and exploitation of the service.

Keywords: Social Simulation, UbikSim, SmartBody, Behavior Markup Language,

BML, Python, Evacuation Plan, Ambient Intelligence, Multi-agent Based Simulation, Graph-

ical User Interface

VII

Agradecimientos

Me gustaŕıa aprovechar este espacio para agradecer a todo aquel que ha ayudado que hoy

esté aqúı. Intentaré no dejarme a nadie, aún sabiendo que es imposible que no lo haga.

En primer y especial lugar a mis padres, por ayudarme a llegar donde he llegado. Por

darme lo que a ellos no les pudieron dar. Sin su apoyo, su ayuda y sus esfuerzos sé que

jamás lo habŕıa logrado.

A mis amigos, tanto dentro como fuera de la Escuela. Tanto dentro como fuera de

Madrid. Tengo la grand́ısima suerte de haberme rodeado muy bien. No puedo nombrar a

nadie en especial porque necesitaŕıa otra memoria sólo para los nombres y el porqué. Ellos

saben quiénes son.

A Carlos Ángel, por su paciencia y haberme ayudado en todo lo que le he pedido. Por

haberme tendido una mano dándome la oportunidad de realizar este proyecto.

A Carmen, por creer en mı́. Por creer en nosotros.

A todo aquel que lee esto y sabe que significa algo para mı́.

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XV

List of Tables XVII

List of Acronyms XIX

1 Introduction 1

1.1 Context . 3

1.1.1 Social simulation . 3

1.1.2 The Mosi-Agil project . 3

1.2 Project objectives . 4

1.3 Structure of this document . 4

2 Enabling Technologies 7

2.1 Overview . 9

2.2 UbikSim . 9

2.2.1 Overview . 9

XI

2.2.2 Simulation controls . 11

2.2.3 UbikSim MOSI-Agil . 11

2.2.4 UbikSim editor . 12

2.3 BML . 15

2.3.1 Introduction . 15

2.3.2 BML Messaging Architecture . 15

2.3.3 The BML Realizer . 16

2.3.4 BML Request Syntax . 16

2.4 Python . 16

2.4.1 Python modules . 17

2.5 SmartBody . 18

2.5.1 Creating a Character . 18

2.5.2 Animating a Character . 20

2.5.3 Python Scripts Usage . 20

2.5.4 BML Usage . 23

2.5.5 BML Creator . 23

2.6 Conclusions . 23

3 Architecture 25

3.1 Introduction . 27

3.1.1 Social Simulator . 28

3.1.2 Graphical User Interface . 29

3.2 SmartSim Architecture . 29

3.2.0.1 Main Module - SmartSim.py 30

3.2.0.2 Configuration module - configuremodule.py 32

3.2.0.3 Scenario module - scenarioModule.py 36

3.2.0.4 Agents creation module - agentsCreationModule.py 38

3.2.0.5 Connections Module - connectionsModule.py 41

3.2.0.6 Tools Module - toolsModule.py 44

3.2.0.7 Locomotion Module - locomotionModule.py 45

3.3 Conclusions . 50

4 Prototype and example usage 51

4.1 Problem and scenario . 53

4.2 Map creation . 53

4.3 Setting the simulation . 56

4.4 Running our simulation . 59

4.5 Simulation Modes . 62

4.6 Controlling the scene . 62

4.7 Results . 63

4.8 Use cases . 63

4.8.1 Introduction . 63

4.8.2 Agent Escaping . 64

4.8.2.1 Overview . 64

4.8.2.2 Setting the simulation . 64

4.8.2.3 Main module . 64

4.8.2.4 Simulation . 66

4.8.3 Crowd Escaping . 73

4.8.3.1 Overview . 73

4.8.3.2 Setting the scene . 73

4.8.3.3 Main module . 73

4.8.3.4 Simulation . 76

4.8.4 Social simulator . 82

4.8.4.1 Overview . 82

4.8.4.2 Setting the scene . 82

4.8.4.3 Main module . 82

4.8.4.4 Simulation . 85

4.8.5 Social simulator with emotions . 93

4.8.5.1 Overview . 93

4.8.5.2 Setting the scene . 93

4.8.5.3 Main module . 93

4.8.5.4 Simulation . 96

4.8.6 Social simulator with character types 99

4.8.6.1 Overview . 99

4.8.6.2 Setting the scene . 99

4.8.6.3 Main module . 99

4.8.6.4 Simulation . 102

4.9 Conclusions . 108

5 Conclusions and future lines 109

5.1 Conclusions . 111

5.2 Achieved goals . 111

5.3 Future work . 112

Bibliography 114

List of Figures

2.1 Graphic interface of UbikSim . 10

2.2 Web service of UbikSim . 11

2.3 UbikSim controls . 12

2.4 UbikSim editor interface. 14

2.5 Adding the model to our character . 19

2.6 The Python command window of SmartBody 21

2.7 SmartBody python scripts loader . 22

3.1 SmartSim Architecture . 28

3.2 The module diagram of the Python infrastructure 30

3.3 Connections module and configuration module interaction 36

3.4 Connections module and Scenario module interaction 38

3.5 Connections module and Agents creation interaction 41

3.6 Connections module and Locomotion module interaction 50

4.1 The model used for our case study. 53

4.2 UbikSim editor interface . 54

4.3 UbikSim editor with imported plan . 55

4.4 Exporting an .obj file . 56

4.5 The model loaded in SmartBody GUI. 60

4.6 A character created by the user in SmartSim 61

4.7 The simulation loaded . 68

XV

4.8 Starting the simulation . 69

4.9 The agent escaping . 70

4.10 The agent has reached the final position . 71

4.11 Stopping the simulation . 72

4.12 The simulation loaded . 77

4.13 Starting the simulation . 78

4.14 The agents escaping . 79

4.15 The agents have reached the final position 80

4.16 Stopping the simulation . 81

4.17 The simulation loaded . 86

4.18 Starting the simulation . 87

4.19 The agents escaping . 88

4.20 The agents have reached the final position 89

4.21 Stopping the simulation . 90

4.22 Creating an agent . 91

4.23 The agent created . 92

4.24 An agent expressing fear . 97

4.25 An agent expressing happiness . 98

4.26 A ’rachel’ type character . 103

4.27 The agent escaping . 104

4.28 The agents have reached the final position 105

4.29 Creating an agent of type ’rachel’ . 106

4.30 The agent created . 107

List of Tables

2.1 UbikSim API . 13

4.1 Configuration options . 58

4.2 Camera options . 62

XVII

List of Acronyms

MOSI-AGIL MOdelado Social de Inteligencia Ambiental aplicado a Grandes InstaLa-

ciones . 3

BML Behaviour Markup Language . 4

AmI Ambient Intelligence . 10

MABS Multi-Agent Based Simulation . 10

XML eXtensible Markup Language . 15

ECA Embodied Conversational Agents . 15

DOM Document Object Model . 15

HTTP Hypertext Transfer Protocol . 11

HTTPS Hypertext Transfer Protocol Secure . 17

JSON JavaScript Object Notation . 12

sbgui SmartBody Graphical User Interface. .20

IDE Integrated Development Environment . 54

XIX

CHAPTER1
Introduction

This chapter provides an introduction to the problem which will be approached in this

project. It provides the context of our project, explaining some key social simulation

concepts. Furthermore, a deeper description of the project and its environment is also

given.

1

CHAPTER 1. INTRODUCTION

2

1.1. CONTEXT

1.1 Context

1.1.1 Social simulation

Social simulation is a research field that applies computational methods to study issues in

the social sciences.

In social simulation, computers supports human reasoning activities by executing pro-

cesses, mechanisms and behaviors that build the reality. This approach allows to investigate

some complex models that cannot be investigated through mathematical models.

Some authors as Robert Axelrod regards social simulation as a third way of doing science,

differing from both the deductive and inductive approach [1]. The generated data can be

analysed using induction, but it comes from a set rules obtained by a deductive method.

A kind of social simulation is agent based social simulation. Agent based simulation

is the representation of social systems as societies of agents, executing and analysing their

behaviour [2]. Agents are autonomous software systems that are intended to describe the

behaviour of observed social entities such as individuals or groups.

1.1.2 The Mosi-Agil project

This project has been developed in the context of the MOdelado Social de Inteligencia

Ambiental aplicado a Grandes InstaLaciones (MOSI-AGIL) project [3]. The MOSI-AGIL

project is a four-year program funded by the Autonomous Region of Madrid through the

program MOSI-AGIL-CM 1. It aims at creating a body of knowledge and practical tools

which are necessary to handle more effectively the behaviour of occupants of large facili-

ties. Therefore, the project studies the development of ambient intelligence and intelligent

environments supported by the use of Agent-Based Social Simulation.

The MOSI-AGIL program presents the following specific objectives:

1. Model of relevant social behaviours in intelligent spaces of big installations and their

interfaces with the intelligent services (sensors and actuators)

2. Develop of services of control and monitoring in intelligent spaces

3. Platform to assist the development, usage and decision making in big intelligent spaces

to achieve the last objectives

1S2013/ICE-3019

3

CHAPTER 1. INTRODUCTION

4. Demonstration of the results in the three use cases:

• Simulation and deployment of a smart home

• Simulation of control, monitoring and evacuation in Madrid Arena

• Simulation and deployment in a university building

5. Coordination of the participants, integration and diffusion of the results

1.2 Project objectives

The main objective of this project is to develop a Graphical User Interface to an evacuation

plans simulator making use of Behaviour Markup Language (BML) [4] . The project result

will be named SmartSim. This project will be part of the MOSI-AGIL, as it is part of the use

cases defined: simulation in a university building. It must be friendly for a not experimented

user but also powerful for an user who want to use it in further developments.

To develop this main goal, we will need to achieve the following sub-objectives:

• Setting an indoor evacuation plans simulator

• Finding a suitable framework that allows us to serve a graphic interface to the social

simulator

• Integrate the social simulator and the graphic engine

• Define a set of use cases that allows us to develop a realistic simulator able to take

advantage of the functionality of the Graphical User Interface

• Make configurable the simulator for the user

• Testing the whole system

1.3 Structure of this document

In this section we will provide a brief overview of all the chapters of this document. It has

been structured as follows:

Chapter 1 provides an introduction to the problem which will be approached in this

project. It provides an overview of the context of the project. Furthermore, a deeper

description of the project and its environment is also given.

4

1.3. STRUCTURE OF THIS DOCUMENT

Chapter 2 contains an overview of the existing technologies on which the development

of the project will rely.

Chapter 3 describes the architecture of the system.

Chapter 4 describes the developed use cases. It is going to be explained the running of

all the tools involved and its purpose. A collection of simulators with differents graphical

users interfaces has been developed. We will analyse all them providing instructions to

setting them up and explaining the expected results we can get of them.

Chapter 5 sums up the findings and conclusions found throughout the document and

gives a hint about future development to continue the work done for this project.

5

CHAPTER 1. INTRODUCTION

6

CHAPTER2
Enabling Technologies

This chapter introduces which technologies have made possible this project. We need

UbikSim to create our paths and setting up our simulation. To render the simulation

we need the SmartBody framework. We will operate this framework using BML to

control movements and behaviours of the agents. The scene will be set using the

Python language.

7

CHAPTER 2. ENABLING TECHNOLOGIES

8

2.1. OVERVIEW

2.1 Overview

Agent based social simulation, has many possibilities of use, but maybe one of the most

interesting is the possibility of predicting the behaviour of individual agents in complex

environments.

A nice example of this is the possibility of simulate dangerous environments and test

the results of acting according to simple rules. A common application is the simulation of

a building in fire. The building is populated by different numbers of people, some doors

are blocked, some people are handicapped... these common situations are simulated and

the different agents act according to a few simple rules. The results of their actions can

be measured and the best of the models can be picked without risking anything, avoiding

dangerous situations.

An implementation of this type of simulator was developed in GSI. This tool is Ubiksim,

a framework used for social simulations with a large sort of options, such as possibilities

of editing and creating environment by users with an easy interface or set the number of

agents from one to a huge amount of them. However, this tool presents some problems. It

is implemented in Java and the user needs to have some knowledge about this language.

Because of this, the goal of this project is to create a more complex and easy to use

graphical user interface to simulate evacuation plans. The selected environment will be the

E.T.S.I. Telecomunicación, more complex than the scenarios commonly used in Ubiksim.

This framework will be operated using Python [5] and BML, friendlier modes of use to

non-experienced users.

The use of BML is very interesting and fits the objectives of the project. It is a language

that describes human non-verbal and verbal behaviour in a manner independent of the

particular realization (animation) method used.

2.2 UbikSim

2.2.1 Overview

We will use a version of the social simulator UbikSim 2.0 [6], developed by Emilio Serrano

and Carlos Ángel Iglesias to recreate the human behaviour inside a building. The map of

our use cases will be modelled and represented on this tool. UbikSim will have the duty to

send the initial positions of the agents involved in the simulation and the paths they will

9

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.1: Graphic interface of UbikSim

follow.

UbikSim is a framework used to develop social simulation which emphasizes the con-

struction of realistic indoor environments, the modelling of realistic human behaviours and

the evaluation of Ubiquitous Computing and Ambient Intelligence systems. UbikSim is

written in Java [7] and employs a number of third-party libraries such as Sweet Home 3D

[8] and MASON [9]. Our implementation consists of a console that will let us launch the

simulation as well as a map in 3D or 2D where we will able to see the position of all the

agents involved in the simulation.

UbikSim is a tool for using Multi-Agent Based Simulation (MABS) in Ambient Intel-

ligence (AmI) [10]. AmI is the development of computerized environments, sensitive to

human and objects actions. MABS is the modelling of big environments with many agents

taking every one of the subjects in the simulation as an agent as defined in agents based

social simulation [11]. In other kinds of simulation, the entire environment is modelled as a

mathematical model where the set of individuals is viewed as a structure that can be char-

10

2.2. UBIKSIM

Figure 2.2: Web service of UbikSim

acterized by a number of variables. Traditionally, when AmI is applied to a large number

of users, there is a point where the real tests are not feasible. However, UbikSim can test

social behaviours of large users groups applying the MABS approach to AmI environments,

proving as a solution for these problems.

We use a webapp version of UbikSim. This version has been developed by Emilio

Serrano as part of the MOSI-AGIL project. It can be controlled via Hypertext Transfer

Protocol (HTTP) requests. We will use these requests to communicate with it.

2.2.2 Simulation controls

UbikSim simulations are temporally divided in steps. We can advance the simulation clock

and start our simulation from the step we prefer. The controls that allows us to control the

simulation are:

• Pause: Pauses the simulation or plays it if it is already paused. We have to execute

this control if the simulation has not started yet to set the simulator.

• Play: Advances one step of the simulation.

• Stop: Stops the simulation and destroys it.

2.2.3 UbikSim MOSI-Agil

Our UbikSim version can be controlled using HTTP requests. We use the API implemented

in this version of UbikSim to interact with it.

11

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.3: UbikSim controls

Using this API we can retrieve the paths and positions of our agents. Using this API,

UbikSim gives us the results in a JavaScript Object Notation (JSON). Parsing these JSON

we can retrieve the steps of our agents and their initial positions.

2.2.4 UbikSim editor

UbikSim provides us of an Editor we can take advantage to export the environment to

SmartBody. We can create the scenario in it using a very friendly interface. Thanks to

the possibilities of this editor, we can create a very detailed scenario that we can use in

SmartBody. The map creation is very friendly as we will see furtherly in Chapter 4.2.

12

2.2. UBIKSIM

Option Effect

output=web Displays the web graphic interface.

control=pause Executes the pause control.

control=play Executes the play control.

control=stop Executes the stop control.

control=frames
Starts the displayers in the server

side.

position=people Returns the agents positions.

position=map
Returns the map coordinates and

obstacles.

position=emergency
Returns the emergency position

and room.

position=“(id,x,y)”

Adds the agent to the position if

there are no agents or obstacles in

the position.

Table 2.1: UbikSim API

13

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.4: UbikSim editor interface.

14

2.3. BML

2.3 BML

When we face the task of creating a social simulator we could have some difficulties on

describing the behavior of our agents. In our project we will use BML, an eXtensible

Markup Language (XML) [12] description for these tasks.

2.3.1 Introduction

BML is an XML description language for controlling the verbal and non verbal behaviour

of Embodied Conversational Agents (ECA) [13]. A BML block describes the physical re-

alization of behaviours (such as speech and gesture) and the synchronization constraints

between these behaviours. The module that executes behaviours specified in BML on the

embodiment of the ECA is called a BML Realizer (See Section 2.3.3).

2.3.2 BML Messaging Architecture

BML does not prescribe a specific message transport. Different architectures have drasti-

cally different notions of a message. A message may come in the form of a string, an XML

document or Document Object Model (DOM) [14], a message object, or just a function

call. However, no matter what message transport is used, the transport and routing layer

should adhere to the following requirements:

• Messages must be received in sent order.

• Messages must contain specific contents that can be fully expressed as XML expres-

sions in the format detailed in this document.

Currently, there are two types of messages:

• BML Requests.

– Sent by the Behavior Planner to the Behavior Realizer.

– BML requests are sent as <BML>blocks containing a number of behavior ele-

ments with synchronisation.

• Feedback Messages.

– Sent by the Behavior Realizer.

15

CHAPTER 2. ENABLING TECHNOLOGIES

– Used to inform the planner (and possibly other processes) of the progress of the

realization process.

2.3.3 The BML Realizer

Conceptually, BML Realizers execute the behaviours described by a stream of incoming

BML Requests. A BML Realizer is responsible for executing the behaviours specified in

each BML request sent to it. Synchronization must be specified by the user.

Each BML Request represents a scheduling boundary. That is: if behaviours are in the

same BML request, this means that the constraints between them are resolved before any

of the behaviours in the request is executed.

2.3.4 BML Request Syntax

All BML behaviors must belong to a BML block. A BML block is formed by placing one

or more BML behaviour elements. Unless synchronization is specified, it is assumed that

all behaviors in a BML block start at the same time after arriving at the BML realizer. In

Listing 2.1 we find a example of a BML command.

Listing 2.1: A BML command example

<bml id="bml1" xmlns="http://www.bml-initiative.org/bml/bml-1.0"

characterId="Alice">

<required>

<gaze id="gaze1" target="PERSON1"/>

<speech id="speech1"><text>Welcome to my humble abode</text></speech>

</required>

<head id="nod1" type="NOD"/>

</bml>

2.4 Python

Python is a widely used general-purpose, high-level programming language. Its design phi-

losophy emphasizes code readability, and its syntax allows programmers to express concepts

in fewer lines of code than would be possible in other languages.

Python supports multiple programming paradigms, such as object-oriented, used in our

16

2.4. PYTHON

project. It features a dynamic type system and automatic memory management.

Python interpreters are available for installation on many operating systems, allowing

Python code execution on a wide variety of systems. Python is free and open-source .

Python development is managed by Python Software Foundation.

2.4.1 Python modules

A module is a file containing Python definitions and statements. The file name is the

module name with the suffix .py appended. Within a module, the module’s name (as a

string) is available as the value of the global variable name. Every Python modules has his

own symbol table.

A module can contain executable statements as well as function definitions. These

statements can be executed from a Python program that imports a module.

Modules can import other modules. It is customary to place all import statements at the

beginning of a module. The imported module names are placed in the importing module’s

global symbol table.

In our project we use the following python modules to interact with Ubiksim:

• Module httplib [15]

This module defines classes which implement the client side of the HTTP and Hyper-

text Transfer Protocol Secure (HTTPS) protocols.

We use this module to interact with our web version of UbikSim. We send HTTP

requests to it using its HTTP interface to retrieve the agents positions and routes.

• Module json [16]

JSON [17] is a lightweight data interchange format inspired by JavaScript object literal

syntax. It is widely used for web programming. This module allows Python to use

data in JSON format.

We use this module in order to control the data we retrieve from UbikSim.

• Module math [18]

It provides access to the mathematical functions defined by the C standard.

We use this module to perform some complex calculations we need to do.

• Module io [19]

17

CHAPTER 2. ENABLING TECHNOLOGIES

The io module provides the Python interfaces to stream handling. SmartBody does

not us allow to perform input/output actions using the Python 2 standard way, so we

have to import this module in our project.

• Module config parser [20]

This module defines the class ConfigParser. This module allows to create and parse a

configuration file. This can be used to write Python programs which can be customized

by end users easily.

We use this module to handle a configuration file.

2.5 SmartBody

SmartBody is a character animation platform originally developed at the USC Institute for

Creative Technologies. SmartBody provides locomotion, steering, object manipulation, lip

syncing, gazing, nonverbal behavior and retargeting in real time.

SmartBody is written in C++ and can be incorporated into most game and simulation

engines. SmartBody is a BML realization engine that transforms BML behavior descriptions

into realtime animations. SmartBody runs on Windows, Linux, OSx as well as the iPhone

and Android devices.

Smartbody provides a very complete rendering platform. It brings a variety of characters

with predefined movements animations and behaviour sets. This allows us to simulate

an environment without creating any character. Just in case we need to create one, the

needed operations for creating it can be easily performed. We would only need exporting

its geometry and provide it animations and behavior sets using SmartBody. It provides

wizards to create them. If we prefer, we can use the ones included in the program.

2.5.1 Creating a Character

To create a character we need to create some files and import them to SmartBody. These

files we would need are:

• The model. We have to provide the geometry of our character. We can get this model

from a polygonal file. The supported formats are the Wavefront Format Files [21]

(files with .obj extension) or a Collada Format File [22] (files with .dae extension). To

add the geometry to our character, we would use the SmartBody Python API.

18

2.5. SMARTBODY

Figure 2.5: Adding the model to our character

• We have to provide the skeleton to our character. This skeleton provides the basic

structure to our character.

In SmartBody we have to import the path of the file in our filesystem. After importing

it we create a character and we add the model and the skeleton. We can perform these

actions using the SmartBody editor or the Python API of SmartBody, as we will see later.

To create it in the editor we have to follow the next steps:

1. Import the folder by File ->Import folder.

2. Create a new character by Create ->Character. We add the skeleton at this step.

3. Add the model by using the menu that opens when we select the character.

19

CHAPTER 2. ENABLING TECHNOLOGIES

2.5.2 Animating a Character

Now we have our character created, we have to animate it.

To animate it we have to add some files to our character. One more time, we can do it

using the SmartBody Python API [23] or the SmartBody Graphical User Interface (sbgui)

editor.

The files we have to import are:

• Behavior. The behavior is a python script that links the gestures of a character

with the character. This gestures can be created and edited by some editors that

SmartBody provides.

• The Steer Manager. The steer manager is a part of SmartBody. It is the component

that manages the characters movements.

To add these to the character is necessary to make use of the Python API.

2.5.3 Python Scripts Usage

SmartBody can be controlled by Python. SmartBody has a Python API. We can control

the simulations making use of this API via code.

There are many aspects of SmartBody that we can control making use of this API.

From cameras, to scene parameters and characters settings, almost every little aspect of

SmarBody can be control via Python.

Of course, this API provides us the instruments to use BML within our characters, as

we will see later.

There are some ways that we can use to send Python commands to SmartBody. But

we will make use of the Commands Window and the Scripts Loader mainly.

The commands window is part of the sbgui user interface. In this window (Figure 2.6)

we can introduce many commands as we want, even full scripts. The Python interpreter will

execute them. This tool is very useful if we want to test the effects of Python commands

or short scripts.

20

2.5. SMARTBODY

Figure 2.6: The Python command window of SmartBody

21

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.7: SmartBody python scripts loader

The Script Loader provides us the possibility of loading an existing Python script into

our application. The Python interpreter will execute it. This tool is very useful for us to

make use of larger scripts and to implement modules that add functionalities to SmartBody.

There are two ways to take advantage of this. We can use the graphic interface, depicted

in Figure 2.7 or we can invoke a script executing sbgui from the terminal with the instruction

-script and the location of the python script we want to execute in our filesystem.

/smartbody/bin/sbgui -scriptpath ../data/scripts -script SmartSim.py

22

2.6. CONCLUSIONS

2.5.4 BML Usage

SmartBody is a BML realization engine that transforms BML behavior descriptions into

real time animations.

All the animations we have created for our characters can be triggered by BML instruc-

tions. The SmartBody Python API has some commands which make use of BML.

Using this, we can create Python scripts in order to have our agents performing actions

and animations.

BML functionality is fully implemented. Even so, we can create new BML and associate

them with new animations.

2.5.5 BML Creator

The BML Creator Window allows us to create BML commands easily. The interface shows

the different BML commands available as tabs, as well as all the options that can be set for

them. For each option, a description will appear if you mouse over the input box.

As you select the command option, an Python command will be generated that performs

the same command, which can be copied and used in a script for later use. The ‘Run’ button

will execute that BML command on the character selected in the ‘Characters’ dropdown,

or ‘*’ for all the characters.

For these features, we have used SmartBody to create the Graphic Interface of our

evacuation plans simulator. SmartBody will be integrated with UbikSim for the first to use

the powerful paths calculator of the second.

2.6 Conclusions

In this chapter we have introduced the technologies we are using in our project and why

are we using them.

We have analyzed them in order to study how to connect them to our pivotal technology,

the SmartBody framework. We will see in our architecture study how we have used them

to create our graphical interface.

23

CHAPTER 2. ENABLING TECHNOLOGIES

24

CHAPTER3
Architecture

This chapter describes in depth how the system is structured in different modules and

how the users interact with them. We will also see how the modules interact with

other modules.

25

CHAPTER 3. ARCHITECTURE

26

3.1. INTRODUCTION

3.1 Introduction

The goal of our project is to develop a graphic interface for an evacuation plans simulator,

the SmartSim project. In this chapter we are going to describe the architecture of the

system we developed to accomplish this objective.

SmartSim is structured in two modules:

• Social simulator: In order to recreate the human behaviour, we use this tool to estab-

lish the destination of the agents and to edit the scene. We use UbikSim, described in

the chapter 2.2, as our social simulator. It has been specifically built for evacuation

plans, so it was perfect for our project.

• Graphic interface We will use this tool for the user to watch and control the simulation.

We use SmartBody, described in the chapter 2.5. It allows us to create a graphic

interface easily. It also makes an extensive use of BML, a language we wanted to

make use of in our project.

A diagram of the SmartSim architecture is shown in Figure 3.1. Each module is detailed

in the following sections.

27

CHAPTER 3. ARCHITECTURE

Figure 3.1: SmartSim Architecture

3.1.1 Social Simulator

We will use UbikSim as the base social simulator in our project.

As we saw in Chapter 2.2, UbikSim is a social simulator that can model human be-

haviours in an emergency situation. It is specially designed for modelling indoor environ-

ments and realistic human behaviours.

For these reasons, we use UbikSim as the creator of our own environments. We can set

the scenario and the initial positions of our agents and add more agents and emergencies.

Information about UbikSim editor have been provided in Chapter 2.2.4. How to use this

tool to create the scene in SmartSim simulations will be treated in Chapter 4.2.

In Chapter 2.2.1 UbikSim is regarded as an exceptional tool for integrating AmI and

MABS, specially designed for simulating evacuation plans. Because of this, the evacuation

plans will be provided by UbikSim. These paths will be retrieved using HTTP, using the

API described in Chapter 2.2.3.

28

3.2. SMARTSIM ARCHITECTURE

3.1.2 Graphical User Interface

We will use SmartBody as the graphical user interface program in our project. SmartBody

gives us many resources that we can use in our simulations. Nevertheless, SmartBody is not

prepared to perform the simulation and calculate the paths that the agents have to follow

in order to evacuate the building. For these reasons, we need to integrate it with UbikSim.

UbikSim performs the pure simulation tasks and SmartBody retrieve the data from it. With

this data, SmartBody creates a scene and allows the user to control it, pausing or advancing

it.

The integration of SmartBody and UbikSim is provided by the SmartSim module. This

module is described in Section 3.2.

3.2 SmartSim Architecture

This project has developed SmartSim, which extends SmartBody for Social Simulation,

integrated with UbikSim. The architecture of SmartSim has been organised in modules as

shown in Figure 3.2. This infrastructure is the core of this project.

29

CHAPTER 3. ARCHITECTURE

Figure 3.2: The module diagram of the Python infrastructure

3.2.0.1 Main Module - SmartSim.py

This is the main module of our Python infrastructure. We load this module from SmartBody

and we control our simulation. As we will see further, we have created some case uses. The

differences between those cases are the differences between their main modules. We will

analyse the common functions to the main modules.

From this module we import the needed python modules.

Listing 3.1: Python modules import

#Importing Python modules

import io

import httplib

import time

30

3.2. SMARTSIM ARCHITECTURE

import ConfigParser

import math

import json

We also load the other modules of our architecture. Loading our Python scripts in

SmartBody is slightly different than importing scripts in Python. We have to use functions

of the Python API of SmartBody in order to load them.

Listing 3.2: SmartSim modules import

#Importing the other modules

scene.run('configureModule.py')

scene.run('agentsCreationModule.py')

scene.run('tools.py')

scene.run('connectionsModule.py')

scene.run('scenarioModule.py')

scene.run('locomotionModule.py')

We load the configuration file. Not all the modules load the same options of this file, as

we will see.

Listing 3.3: Configuration file parse

#Loading the configuration file

config = ConfigParser.RawConfigParser()

config.read('SmartSimSettings.cfg')

amountAgents = config.getint('Settings', 'amountAgents')

ubikSimServer = config.get('Settings', 'ubikSimServer')

meshScenario = config.get('Settings', 'meshScenario')

modeSimulation = config.get('Settings', 'modeSimulation')

SmartSim writes in a file the results of our simulation. In this file our program writes

the time an agent spent to exit the building. Further descriptions of this file can be found

in Chapter 4.7. This file is the results file of our simulation.

To perform input and output actions in this file, the file must be opened prior to any of

these actions. In Listing 3.4 this action is performed.

Listing 3.4: Results file setup

31

CHAPTER 3. ARCHITECTURE

#Opening the results file

results = io.open('SmartSimResults', 'wb')

SmartBody API contains a function that allows us to perform an infinite loop controlling

the time and not blocking the framework. We use this procedure to run our simulation and

steering the agents to the path they must follow to exit the building. To execute this module

properly we have to invoke it in the main module. The needed python instructions are:

Listing 3.5: Update loop execution

scene.removeScript('locomotion')

locomotion = LocomotionModule()

scene.addScript('locomotion', locomotion)

3.2.0.2 Configuration module - configuremodule.py

This module initializes SmartBody. It makes some necessary configuration processes. There

are some mandatory processes that must be performed after loading a script in SmartBody,

so this module was created to cope with them. This module is also used to set the dimensions

of the scenario and the default position of camera.

In SmartBody, we have to call the graphic interface of SmartBody and a default camera.

Without these tasks, the graphic interface of SmartBody does not display, making for us

impossible to have a graphic interface for our simulation (although it would run in a second

plane). We also have to load the paths for our resources and set some resources as the

skeleton of the characters.

These actions are performed in the init function, defined in Listing 3.6.

Listing 3.6: Init function

def init(self):

''' Inits SmartBody'''

#Add asset paths

print "Adding assets paths"

scene.addAssetPath('mesh', 'mesh')

scene.addAssetPath('motion', 'ChrBrad')

scene.addAssetPath('motion', 'ChrRachel')

32

3.2. SMARTSIM ARCHITECTURE

scene.addAssetPath("script", "behaviorsets")

scene.addAssetPath('script', 'scripts')

scene.loadAssets()

#Set scene scale

print "Setting scene scale"

scene.setScale(1.0)

Set joint map for agents

print 'Setting up joint map for agents'

scene.run('zebra2-map.py')

zebra2Map = scene.getJointMapManager().getJointMap('zebra2')

bradSkeleton = scene.getSkeleton('ChrBrad.sk')

zebra2Map.applySkeleton(bradSkeleton)

zebra2Map.applyMotionRecurse('ChrBrad')

rachelSkeleton = scene.getSkeleton('ChrRachel.sk')

zebra2Map.applySkeleton(rachelSkeleton)

zebra2Map.applyMotionRecurse('ChrRachel')

#Creates scene

print "Creating scene"

getViewer().show()

Apart from these crucial assignments, we also charge this module with the duty of

initializing our scene in two more functions.

SmartBody scene is finite. We do not have an unlimited scenario, our agents are limited

to a defined area. The default dimensions of this area are too small for the area our

simulation will cover. For this, we have to change the area using a function defined in our

module. The setLimits (Listing 3.7) function is used for applying the desired limits of the

scene.

Listing 3.7: setLimits function

def setLimits(self, xLimitScene, yLimitScene):

'''Sets limits of scene grid'''

steerManager = scene.getSteerManager()

steerManager.setDoubleAttribute('gridDatabaseOptions.gridSizeX',

xLimitScene)

steerManager.setDoubleAttribute('gridDatabaseOptions.gridSizeZ',

yLimitScene)

33

CHAPTER 3. ARCHITECTURE

How do we calculate these dimensions? We can calculate ourselves or letting the au-

toSetLimits (Listing 3.8) function to calculate them for us. This function makes use of the

getMaxScenario function defined in Listing 3.19 to get the scenario borders. This interaction

is detailed in Figure 3.3.

Listing 3.8: autoSetLimits function

def autoSetLimits(self, ubikSimServer):

vectorLimits = ConnectionsModule().getMaxScenario(ubikSimServer)

vectorLimits = [vectorLimits[0] + 100, vectorLimits[1] + 100]

return vectorLimits

In this module we also adjust the camera position using their properties. We need to

execute this function after loading our program. Without a defined camera, SmartBody

would not display. The camera function, defined in Listing 3.9, sets a default camera and

makes it point to a desired point.

Listing 3.9: camera function

def camera(self, cameraEye, cameraCenter, cameraPosition):

''' Configures camera'''

#Gets camera

getCamera().reset()

scene.createPawn('camera')

camera = getCamera()

#Sets camera with provided values

camera.setEye(cameraEye[0], cameraEye[1], cameraEye[2])

camera.setCenter(cameraCenter[0], cameraCenter[1], cameraCenter[2])

scene.getPawn('camera').setPosition(SrVec(cameraPosition[0],

cameraPosition[1], cameraPosition[2]))

We have defined a function, the autoSetCamera function, defined in Listing 3.10 that

calculates the medium point between our agents. In our simulators we have set this point

as the default point for our camera to point. However, this function could be ignored.

34

3.2. SMARTSIM ARCHITECTURE

Listing 3.10: autoSetCamera function

def autoSetCamera(self, amountAgents):

xCamera = 0

yCamera = 0

for i in range (amountAgents):

character = scene.getCharacter(scene.getCharacterNames()[i])

xCamera = xCamera + character.getPosition().getData(0)

yCamera = yCamera + character.getPosition().getData(2)

xCamera = xCamera/amountAgents

yCamera = yCamera/amountAgents

centerCamera = [xCamera, 0, yCamera]

return centerCamera

35

CHAPTER 3. ARCHITECTURE

Figure 3.3: Connections module and configuration module interaction

3.2.0.3 Scenario module - scenarioModule.py

This module is created to cope with all the scenario related tasks. The scenario resources

are loaded in a different way than the characters resources. This module loads the scenario

resources and sets a mark for the emergency.

In the addScenario function, defined in Listing 3.11, the scenario polygonal model indi-

cated in the configuration file is loaded and its dimensions are adjusted.

Listing 3.11: addScenario function

def addScenario(self, scenarioMesh):

scene.loadAssetsFromPath("scene/" + scenarioMesh)

scenario = scene.createPawn("scenario")

scenario.setVec3Attribute("meshScale", .01, .01, .01)

scenario.setStringAttribute("mesh", scenarioMesh)

We also get the emergency position and add the emergency mark in the addEmergency

function, defined in Listing 3.12. The emergency position is given by UbikSim. As we saw

in Table 2.1, UbikSim API allows us to make this request. We make this request using

the getUbikSimEmergency function, defined in Listing 3.17. This interaction is detailed in

Figure 3.4.

Listing 3.12: addEmergency function

36

3.2. SMARTSIM ARCHITECTURE

def addEmergency(self, ubikSimServer):

emergencyPosition = ConnectionsModule().getUbikSimEmergency(ubikSimServer

)

emergency = scene.createPawn("emergency")

emergency.setStringAttribute('collisionShape','box')

emergency.setVec3Attribute('collisionShapeScale',1.0,1.0,1.0)

emergency.setPosition(emergencyPosition)

37

CHAPTER 3. ARCHITECTURE

Figure 3.4: Connections module and Scenario module interaction

3.2.0.4 Agents creation module - agentsCreationModule.py

This module creates the agents and sets their positions with the data retrieved from Ubik-

Sim. We need this module to fill the simulation with agents. This module can be used both

for getting agents from UbikSim and creating agents in a desired position.

The settleAgents function, defined in Listing 3.13, we interact with UbikSim to get the

agents position. The interaction is described in Figure 3.5. In this function we call both

the getUbikSimPositions (Listing 3.16) function, to get the agents positions, and addAgent

function (Listing 3.14), to create the agents with the provided positions.

Listing 3.13: settleAgents function

def settleAgents(self, amountAgents, ubikSimServer):

'''Adds the desired amount of agents to SmartSim'''

#Getting list of initial positions from UbikSim

listData = ConnectionsModule().getUbikSimPositions(ubikSimServer)

#Creating the desired amount of agents

for i in range(amountAgents):

agentName = 'Agent%s' % i

characterKind = 'default'

posX = listData[i][1]["positionX"]

posZ = listData[i][1]["positionY"]

agentPosition = SrVec(posX, 0, posZ)

38

3.2. SMARTSIM ARCHITECTURE

for typeCharacter in typesCharacters:

if (i in typeCharacterDict[typeCharacter]):

characterKind = str(typeCharacter)

self.addAgent(agentName, agentPosition, characterKind)

Set up list of Brads

agentsList = []

for name in scene.getCharacterNames():

if 'Agent' in name:

agentsList.append(scene.getCharacter(name))

The agents are created in the addAgent function (Listing 3.14).

The character is assigned a skeleton and a polygonal model. Two key elements for

the character are provided: the behaviour set and the steer manager. Different models

and behaviour sets are provided depending on the agent type. Agents types are further

explained in Section 4.8.6.

Listing 3.14: addAgent function

def addAgent (self, agentName, agentPosition, *characterType):

'''Adds an agent to SmartSim'''

#Creation of the agent

agent = scene.createCharacter(agentName, '')

for character in characterType:

characterType = character

characterType = str(characterType)

#Creation of the agent structure

if (characterType == 'rachel'):

print 'Hola'

print characterType

agentSkeleton = scene.createSkeleton('ChrRachel.sk')

else:

print 'Que te den'

print characterType

agentSkeleton = scene.createSkeleton('ChrBrad.sk')

agent.setSkeleton(agentSkeleton)

#Setting up agent position

39

CHAPTER 3. ARCHITECTURE

agent.setPosition(agentPosition)

#Creation of standard controllers

agent.createStandardControllers()

#Adding deformable mesh to agent

agent.setVec3Attribute('deformableMeshScale', .01, .01, .01)

if (characterType == 'rachel'):

agent.setStringAttribute('deformableMesh', 'ChrRachel.dae')

elif (characterType == 'maarten'):

agent.setStringAttribute('deformableMesh', 'ChrMaarten.dae')

else:

agent.setStringAttribute('deformableMesh', 'ChrBrad.dae')

if (characterType == 'maarten'):

scene.run('BehaviorSetMaleMocapLocomotion.py')

setupBehaviorSet()

retargetBehaviorSet(agentName)

scene.run('BehaviorSetGestures.py')

setupBehaviorSet()

retargetBehaviorSet(agentName)

else:

scene.run('BehaviorSetMaleLocomotion.py')

setupBehaviorSet()

retargetBehaviorSet(agentName)

scene.run('BehaviorSetGestures.py')

setupBehaviorSet()

retargetBehaviorSet(agentName)

#Adding Steer manager to agent

steerManager = scene.getSteerManager()

steerAgent = steerManager.createSteerAgent(agentName)

steerAgent.setSteerStateNamePrefix("all")

steerAgent.setSteerType("example")

agent.setBoolAttribute('steering.pathFollowingMode', False)

#Setting initial body posture

bml.execBML(agentName, '<body posture="ChrBrad@Idle01"/>')

scene.getCharacter(agentName).setStringAttribute("displayType", "mesh")

40

3.2. SMARTSIM ARCHITECTURE

Figure 3.5: Connections module and Agents creation interaction

3.2.0.5 Connections Module - connectionsModule.py

This module makes the necessary connections between our version of UbikSim and Smart-

Body. As we have seen in Sections 3.2.0.3 and 3.2.0.4 and we will see in Section 3.2.0.7, we

need to connect to UbikSim operating SmartSim. This module has been created to handle

these connections.

The getUbikSimRoutes function, defined in Listing 3.15, is used to get the agents paths

from UbikSim. Agent routes should be converted between UbikSim and Smartbody. This

conversion is done by calling the functions xFromVec and yFromVec, defined in Listing 3.22.

Listing 3.15: getUbikSimRoutes function

def getUbikSimRoutes(self, ubikSimServer):

'''Gets agents routes from UbikSim'''

conn = httplib.HTTPConnection(ubikSimServer)

conn.request('GET', '/UbikSimMOSI-AGIL-Server/ubiksim?position=goals')

data = conn.getresponse()

data = data.read()

jsondata = json.loads(data)

listdata = jsondata.items()

step = []

agentRoute = []

routes = []

41

CHAPTER 3. ARCHITECTURE

for i in range (len(listdata)):

for j in range (len(listdata[i][1]['goalPath'])):

xStep = Tools().xFromVec(listdata[i][1]['goalPath'][j]) * 0.3

yStep = Tools().yFromVec(listdata[i][1]['goalPath'][j]) * 0.3

step.append(xStep)

step.append(yStep)

agentRoute.append(step)

step = []

routes.append(agentRoute)

agentRoute = []

return routes

The getUbikSimPositions function (Listing 3.16) is used to retrieve the initial positions

of agents from UbikSim. This function is needed to get the positions to fill the agents as in

settleAgents function defined in Listing 3.13.

Listing 3.16: getUbikSimPositions function

def getUbikSimPositions(self, ubikSimServer):

'''Gets agents initial positions from UbikSim'''

conn = httplib.HTTPConnection(ubikSimServer)

conn.request('GET', '/UbikSimMOSI-AGIL-Server/ubiksim?position=people')

data = conn.getresponse()

data = data.read()

jsondata = json.loads(data)

listdata = jsondata.items()

for i in range (len(listdata)):

listdata[i][1]["positionX"] = listdata[i][1]["positionX"] * 0.3

listdata[i][1]["positionY"] = listdata[i][1]["positionY"] * 0.3

return listdata

The getUbikSimEmergency function, defined in Listing 3.17 we connect to UbikSim and

return the emergency position. The xFromVec and yFromVec functions (Listing 3.22) are

used in this one.

Listing 3.17: getUbikSimEmergency function

def getUbikSimEmergency(self, ubikSimServer):

42

3.2. SMARTSIM ARCHITECTURE

conn = httplib.HTTPConnection(ubikSimServer)

conn.request('GET', '/UbikSimMOSI-AGIL-Server/ubiksim?position=emergency'

)

data = conn.getresponse()

data = data.read()

emergencyUbikSim = (data[data.index('('):data.index(')')+1])

xVector = Tools().xFromVec(emergencyUbikSim) * 0.3

yVector = Tools().yFromVec(emergencyUbikSim) * 0.3

vectorEmergency = SrVec(xVector, 0, yVector)

return vectorEmergency

The getFullRoute function (Listing 3.18) gets a string with the complete path for an

agent.

Listing 3.18: getFullRoute function

def getFullRoute(self, ubikSimServer, agentIndex):

agentsSteps = ConnectionsModule().getUbikSimRoutes(ubikSimServer)

fullRoute = ''

for i in range (len(agentsSteps[agentIndex])):

xRoute = str(agentsSteps[agentIndex][i][0])

yRoute = str(agentsSteps[agentIndex][i][1])

fullRoute = fullRoute + xRoute + ' ' + yRoute + ' '

return fullRoute

The getMaxScenario function (Listing 3.19) gets the maximum dimensions of the map.

It is used in the limits calculation of the scene.

Listing 3.19: getMaxScenario function

def getMaxScenario(self, ubikSimServer):

43

CHAPTER 3. ARCHITECTURE

conn = httplib.HTTPConnection(ubikSimServer)

conn.request('GET', '/UbikSimMOSI-AGIL-Server/ubiksim?position=map')

data = conn.getresponse()

data = data.read()

jsondata = json.loads(data)

listdata = jsondata.items()

maxX = listdata[0][1] * 0.3

maxY = listdata[2][1] * 0.3

vectorMax = [maxX, maxY]

return vectorMax

3.2.0.6 Tools Module - toolsModule.py

This module allows us to make some calculations and conversions between the UbikSim

format and SmartBody standards.

The distance function, defined in Listing 3.20, calculates the distance between two

points. The distance between our agents position and the next position they have to move

into should be calculated. Using this method we control that our agents are given a new

position when they have arrived to the last one. We check this in the singleStep function

defined in Listing 3.23.

Listing 3.20: distance function

def distance (self, p1, p2):

'''Calculates the distance between two points'''

x = (p1.getData(0) - p2.getData(0))

x = x*x

y = (p1.getData(2) - p2.getData(2))

y = y*y

return math.sqrt(x+y)

We provide two methods we will need to get data from vectors in SmartBody and in

UbikSim standards. This function is defined in the Listing 3.21.

44

3.2. SMARTSIM ARCHITECTURE

Listing 3.21: string2vec and vec2str functions

def string2vec (self, stvec):

'''Converts String to SrVec'''

posX = int (stvec[stvec.index('(')+1:stvec.index(',')])

posZ = int (stvec[stvec.index(',')+1:stvec.index(')')])

return SrVec(posX, 0, posZ)

def vec2str(self, vec):

''' Converts SrVec to string '''

x = vec.getData(0)

y = vec.getData(2)

z = vec.getData(2)

if -0.0001 < x < 0.0001: x = 0

if -0.0001 < y < 0.0001: y = 0

if -0.0001 < z < 0.0001: z = 0

return "" + str(x) + " " + str(y) + ""

We also need to retrieve the coordinates from the UbikSim positions. We use these two

functions defined in Listing 3.22.

Listing 3.22: xFromVec and yFromVec functions

def xFromVec (self, vec):

return int (vec[vec.index('(')+1:vec.index(',')])

def yFromVec (self, vec):

return int (vec[vec.index(',')+1:vec.index(')')])

3.2.0.7 Locomotion Module - locomotionModule.py

This module is used to control our simulation and to make our agents follow their path. We

control every step of our simulation and makes it advance, pause or stop it. We also define

45

CHAPTER 3. ARCHITECTURE

how we save the results of our simulation, writing them in a document.

We have defined how to manage every step of our simulation in a function. This function

is called every time the loop we described in Section 3.2.0.1 is executed (if the simulation

is not stopped or paused).

We have implemented two modes of simulation. The difference between them is how we

send the path to our agents. In Section 4.5, the differences are further explained.

With every loop we check if our character is near of his final position. If he has reached

it, we write his statistics in the results file.

In this function we use the getUbikSimRoutes we describe in Listing 3.15. We also use

the distance function we defined in Listing 3.20.

In Figure 3.6 we describe the interaction between the connections module and the loco-

motion module.

Listing 3.23: singleStep function

def singleStep(self):

'''Updates the simulation'''

listdata = ConnectionsModule().getUbikSimRoutes(ubikSimServer)

#Charges the status of every agent in the simulation

agentStep = ConnectionsModule().getSteps()

for i in range (amountAgents):

#Gets one character of the simulation

agent = scene.getCharacter('Agent%s' % i)

positionVec = agent.getPosition()

finalPosition = SrVec(listdata[i][len(listdata[i])-1][0], 0, listdata

[i][len(listdata[i])-1][1])

if (modeSimulation == 'gettingSteps'):

if (behaviors and firstStep[i]):

bml.execBML(agent.getName(), '<body posture="ChrBrad@126_fear"/>'

)

firstStep[i]

if (agentStep[i]+1 < len(listdata[i])):

46

3.2. SMARTSIM ARCHITECTURE

#Checks if the character has reached the position =

reachPosition = SrVec(listdata[i][agentStep[i]][0], 0, listdata[i

][agentStep[i]][1])

if (Tools().distance (positionVec, reachPosition) <=1.8):

#Directs the agent to the next position

nextPosition = SrVec(listdata[i][agentStep[i]+1][0], 0,

listdata[i][agentStep[i]+1][1])

if (behaviors and Tools().distance(positionVec,

positionEmergency)):

bml.execBML(agent.getName(), '<locomotion speed="10" target="

' + Tools().vec2str(nextPosition) + '"/>')

bml.execBML(agent.getName(), '<body posture="

ChrBrad@Idle01_BeatHighBt01"/>')

#bml.execBML(agent.getName(), 'gritar Help')

else:

bml.execBML(agent.getName(), '<locomotion speed="20" target="

' + Tools().vec2str(nextPosition) + '"/>')

agentStep[i] = agentStep[i]+1

elif (modeSimulation == 'bmlRoute'):

if (firstStep[i]):

route = ConnectionsModule().getFullRoute(ubikSimServer, i)

agent = scene.getCharacter('Agent%s' % i)

agent.setBoolAttribute("steering.pathFollowingMode", True)

bml.execBML(agent.getName(), '<locomotion target="'+route+'"/>')

firstStep[i] = False

if amountLeaders is not None:

leaderName = ('Agent%s' % i)

for j in range (amountFollowers):

follower = scene.getCharacter(leaderName + '%s' % j)

follower.setBoolAttribute("steering.pathFollowingMode", True)

bml.execBML(follower.getName(), '<locomotion target="'+route+

'"/>')

47

CHAPTER 3. ARCHITECTURE

if (Tools().distance (positionVec, finalPosition) <=1.5 and inside[i

]):

#if (behaviors):

#BML aliviarse

timeExit = time.time() - timeStart[0]

if (len(timeStart) > 1):

timePaused = 0

for i in range (len(timeStart) - 1):

timePaused = timePaused + (timePause[i] - timeStart[i])

timeExit = timeExit - timePaused

print ('Agent%s has reached his final position' % i)

print ('Agent%s has left the building' % i)

results.write('Agent%s succesfully exited the building\n' % i)

results.write('Agent exited the building in %s seconds\n' %

timeExit)

if (behaviors):

bml.execBML(agent.getName(), '<body posture="ChrBrad@112_happy"/>

')

inside[i] = False

#Sets the step of the route in which the agent is

ConnectionsModule().setSteps(agentStep)

We have implemented in this module the controls of the simulation. We can play, pause

or close the document for it to be generated. These functions are defined in Listing 3.24.

Listing 3.24: Controls functions

def closeDocument(self):

results.close()

def pauseSimulation(self):

timeStop.append(time.time())

simulationStarted = False

48

3.2. SMARTSIM ARCHITECTURE

def finishSimulation(self):

LocomotionModule().pauseSimulation()

LocomotionModule().closeDocument()

def playSimulation(self):

timeStart.append(time.time())

global simulationStarted

simulationStarted = True

49

CHAPTER 3. ARCHITECTURE

Figure 3.6: Connections module and Locomotion module interaction

3.3 Conclusions

We have seen the architecture of our project. As we see, the entire project has been

implemented with a high modularity, making possible interchanging components with little

effort and changing any of them without affecting all the system.

UbikSim allows us creating a scene easily and SmartBody make possible for us to im-

plement a very complete and detailed graphic interface. Integrating and extending these

two tools allowed us to create SmartSim.

The Python interface can be used to implement a high variety of projects, using parts

of it or full. In this project we have made a demonstration of this implementing various use

cases, changing only the main module of the infrastructure.

50

CHAPTER4
Prototype and example usage

In this chapter we are going to describe the developed use cases. We will explain the

running of all the tools involved and its purpose. We will analyze the outcome of each

case and how we developed it.

51

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

52

4.1. PROBLEM AND SCENARIO

4.1 Problem and scenario

As we explained in previous chapters of this document, we are facing the task of creating

a social simulator that allows us to simulate evacuation plans. The goal of this project

should be to provide the user the easiest and painless way to adapt his own case and run

the simulations in it.

To test our infrastructure we have used a model based on the B building of the ETSI

Telecomunicación of the Universidad Politécnica de Madrid.

Figure 4.1: The model used for our case study.

4.2 Map creation

We can use any .obj file and export it to SmartBody to use it as the scenario in our

simulation. Any polygonal model generated with 3D modelling programs such as Blender

could fit. However, UbikSim provides us with its own editor, which eases so much the map

creation task.

UbikSim editor is based in Sweet Home 3D. Sweet Home 3D is a free interior design

application. We can draw the plan of our scenario, arrange furniture on it and visit the

53

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

results in 3D. It is so easy to create a scenario as drawing the walls and rooms over an

imported plan of it. Several objects libraries of objects has been released and they can be

imported to the editor, which can add completion and detail to our scenario, enhancing the

simulator experience.

Figure 4.2: UbikSim editor interface

We can start UbikSim editor using the Integrated Development Environment (IDE) in

where we load UbikSim project. To start it we have to run the StartUbikEditor.java class.

The editor will start and we can use its interface to draw our scene. We can even import a

plan and draw over it, easing the task.

54

4.2. MAP CREATION

Figure 4.3: UbikSim editor with imported plan

55

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

When we have finished editing the scenario we can export it to the environments folder

in UbikSim. UbikSim uses its own extension for the environments. UbikSim editor exports

the files to this extension.

We have to export now the scenario to SmartBody. We can do it in the editor.

When we draw our scene, the editor creates a 3D model of it. We can export this model

to an .obj file. This file can be used in SmartBody as our scenario. This procedure allows

us to use exactly the same scenario in both SmartBody and UbikSim.

Figure 4.4: Exporting an .obj file

4.3 Setting the simulation

To start SmartSim we have to run the webapp UbikSim version. SmartBody retrieves the

paths and positions from it, so it has to be started and in the step of simulation from which

we want to run our graphic interface.

56

4.3. SETTING THE SIMULATION

We have to configure our scene in the UbikSim editor. There we will set the positions of

our agents, the amount of them, our scenario and the position of the emergency. All these

elements will be exported to SmartBody using http requests.

As we saw in the architecture definition, SmartSim is configured using a configuration

file. We can set up some important aspects in it. An example of this file and its sctructure

is:

Listing 4.1: Configuration file example

[Settings]

amountAgents= 10

ubikSimServer= localhost:8080

meshScenario= ETSIT.obj

modeSimulation= gettingSteps

In Table 4.1 we find a descriptions of the options we can configure in SmartSim using

this file:

57

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Option Description

amountAgents
The number of agents in our

simulation

amountLeaders
The number of leaders in our

simulation

ubikSimServer
The URL of the server where

UbikSim is hosted

meshScenario

The name of the file which the

scenario of our simulation is

modelled after. The file must be

located in the path

smartbody/data/scene

modeSimulation

The two possible simulation modes

we have are ’gettingSteps’ and

’bmlRoute’

Types

Sets which agents will not be of the

standard type and the type of

them. This is explained in Chapter

4.8.6.2

Table 4.1: Configuration options

58

4.4. RUNNING OUR SIMULATION

4.4 Running our simulation

There are two ways of running SmartSim scripts in SmartBody. We can run sbgui and

load the main module script of our simulation or run the main module script directly using

execution arguments of sbgui.

After loading the main module, sbgui will then start and load our scene. It will display

the agents, the emergency and the scenario.

In Figure 4.5 we can see our scene loaded and ready for the simulation.

When we load our scene we can control the progress of it. As we saw in Chapter 3.2.0.7,

we have play and stop controls defined in our code.

We can also add agents to the scene. SmartBody provides us with controls to control

them. We can select a character and move it to a point using the secondary button, as in

many video games.

In 4.6 we can see a character created by the user in SmartSim

59

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.5: The model loaded in SmartBody GUI.

60

4.4. RUNNING OUR SIMULATION

Figure 4.6: A character created by the user in SmartSim

61

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

4.5 Simulation Modes

In SmartSim, we can run the simulation in two different simulation modes.

The differences are in how the paths are assigned to the agents.

• ’gettingSteps’ : The program checks periodically the agent position. If the agent is

near to the next step in the path, he is directed to the next one.

• ’bmlRoute’ : The complete path is given to the agent in a BML command. The agent

follows it until he reaches the final step.

Each mode has its own advantages. In some simulations, the user can set in which mode

he wants the simulation to be executed. Nevertheless, in certain simulations only one of the

modes is available.

The unavailabilities of one the simulation modes are motivated by how the simulation

cases are designed. In some cases the two modes cannot be applied.

We will see in which cases we can use both or only one of them in Section 4.8.

4.6 Controlling the scene

SmartSim allows us to control the camera. The camera points to the center position when

we load the scene. We can rotate the camera around this point and zoom onto it.

Action Effect

ALT + Right Click Controls the zoom of the camera.

ALT + Middle Click
Controls the point which the

camera points to.

ALT + Left Click
Rotates the camera towards the

point it is pointing.

Table 4.2: Camera options

We can also change the point which the camera points to and its position using some

python commands.

62

4.7. RESULTS

Listing 4.2: Camera control commands

camera.setEye(X,Y,Z) #Location of the camera

camera.setCenter(X,Y,Z) #Target at which the camera is pointed

scene.getPawn(`camera').setPosition(X,Y,Z) #The camera object position

4.7 Results

We can retrieve some interesting statistics from SmartSim. As we saw in the architecture

chapter, SmartSim generates a results file. In this file we find the time that our agents

spent exiting the building.

Listing 4.3: Results file example

Agent8 succesfully exited the building

Agent exited the building in 50.7330379486 seconds

Agent0 succesfully exited the building

Agent exited the building in 53.5379369259 seconds

Agent6 succesfully exited the building

Agent exited the building in 72.3267347813 seconds

Agent9 succesfully exited the building

Agent exited the building in 79.9186098576 seconds

The file is not autogenerated. Python makes possible to auto generate a file without

closing it, but, due to SmartBody limitations, it has to be closed for SmartSim to generate

it. If we close it during a simulation, it cannot be opened anymore, so it should be closed

when all the data we want to retrieve has been generated.

4.8 Use cases

4.8.1 Introduction

We have developed some use cases to successively improving our system in order to achieve

the objectives and to take advantage of the SmartBody and BML capacities. We developed

a series of simulators increasing their complexity to achieve the full understanding of our

base architecture. We have developed these for the user to understand our system and how

to develop his own simulator using his own case effortlessly.

63

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

4.8.2 Agent Escaping

4.8.2.1 Overview

Our first case is based in the simplest possible case. We have only one agent in our build-

ing. He will escape of the building following the path given by UbikSim. We display the

emergency and the character escaping the building.

This is the basic case which we will use to develop our system. We will explain how we

build it and how to get the results of the simulation.

4.8.2.2 Setting the simulation

We use the standard SmartSim configuration file. We will use almost all the options except

the amountAgents option, as it will be set to one by default.

The characters types are disabled also, as the only character type available is the default

character.

Our scene must be in the path we declare in the configuration file and also in the

environments path of UbikSim.

An example of how to configure our simulation would be:

Listing 4.4: One agent case configuration example

[Settings]

ubikSimServer= localhost:8080

meshScenario= ETSIT.obj

modeSimulation= gettingSteps

4.8.2.3 Main module

Our main module is the main difference between our cases, as the other modules are not

changed. Changing the main module we change the interactions between our modules,

getting the desired outcome for our simulation.

Listing 4.5: One agent case main module

agentStep = []

64

4.8. USE CASES

inside = []

firstStep = []

timeStart = []

timeStop = []

simulationStarted = False

config = ConfigParser.RawConfigParser()

config.read('SmartSimSettings.cfg')

amountAgents = 1

ubikSimServer = config.get('Settings', 'ubikSimServer')

meshScenario = config.get('Settings', 'meshScenario')

modeSimulation = config.get('Settings', 'modeSimulation')

print amountAgents

print ubikSimServer

print meshScenario

print modeSimulation

print "|--|"

print "| Starting SmartSim |"

print "|--|"

print ""

scene.addAssetPath('script', 'scripts')

scene.loadAssets()

print "Initiating Scene"

ConfigureModule().init()

print "Initiating global variables"

ConfigureModule().initGlobalVariables(amountAgents)

print "Setting scene limits"

vectorLimits = ConfigureModule().autoSetLimits(ubikSimServer)

xLimitScene = vectorLimits[0]

yLimitScene = vectorLimits[1]

ConfigureModule().setLimits(xLimitScene, yLimitScene)

print "Setting scenario"

ScenarioModule().addScenario(meshScenario)

ScenarioModule().addEmergency(ubikSimServer)

print "Creating agents"

65

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

AgentsCreationModule().settleAgents(amountAgents, ubikSimServer)

print "Configuring camera settings"

cameraCenter=ConfigureModule().autoSetCamera(amountAgents)

cameraEye = [cameraCenter[0]+5, 5, cameraCenter[2]+2]

cameraPosition = cameraEye

ConfigureModule().camera(cameraEye, cameraCenter, cameraPosition)

print "Getting routes"

ConnectionsModule().initSteps(amountAgents)

steerManager = scene.getSteerManager()

steerManager.setEnable(False)

steerManager.setEnable(True)

print "Scene settled"

scene.removeScript('locomotion')

locomotion = LocomotionModule()

scene.addScript('locomotion', locomotion)

def play():

LocomotionModule().playSimulation()

def stop():

LocomotionModule().finishSimulation()

We set the amountAgents option to 1 by default. We load the other options and run

the simulation.

SmartBody is set up. We set the limits of the scenario, load the scenario and create the

agents. The camera is set up according with the agents positions. We get the paths of the

agents and run the update function of the locomotion module.

We have defined some functions to simplify the user interface. With executing play() or

stop() in the Commands Window we are executing functions with longer names.

4.8.2.4 Simulation

We run SmartBody and load our script SmartSimOneCharacter.py. We can play the sim-

ulation using only the play() function. Our agent escapes from his initial position until

one exit. He remains in the safe position. When we get until this point, we can stop the

simulation. Doing this we can retrieve the results of it. In the results document we can get

66

4.8. USE CASES

the time that our agent has spent exiting the building.

Listing 4.6: One agent case results file example

Agent0 succesfully exited the building

Agent exited the building in 28.1872520447 seconds

The figures 4.7, 4.8, 4.9, 4.10 and 4.11 show some important moments of our simulation.

67

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.7: The simulation loaded

68

4.8. USE CASES

Figure 4.8: Starting the simulation

69

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.9: The agent escaping

70

4.8. USE CASES

Figure 4.10: The agent has reached the final position

71

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.11: Stopping the simulation

72

4.8. USE CASES

4.8.3 Crowd Escaping

4.8.3.1 Overview

We build this case over the last case. As we stated before, we are building our project brick

by brick, so after having a functional simulator with only one agent, the next logical step

is developing a simulator with more agents.

In this simulation we design a number of characters and one of these agents will be the

leader. The other characters will follow the leader from their initial point to the exit.

This case will help us to improve our previous approach without bothering processing

multiple paths and characters informations. Also, following some designed leaders is a very

common behavior in evacuation plans.

4.8.3.2 Setting the scene

For this simulation we will use the amountAgents value to set how many agents will follow

each leader. We will also use the amountLeaders option to set up how many characters will

be leaders.

Our configuration file could be:

Listing 4.7: Crowd case configuration file example

[Settings]

ubikSimServer= localhost:8080

meshScenario= ETSIT.obj

modeSimulation= bmlRoute

amountLeaders=1

amountAgents=3

4.8.3.3 Main module

To execute this simulation we have to run the main module of this simulation. As we saw

previously, the other modules are common to every simulation.

Listing 4.8: Crowd case main module

import io

73

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

import httplib

import time

import ConfigParser

import math

import json

agentStep = []

inside = []

firstStep = []

timeStart = []

timeStop = []

results = io.open('SmartSimResults', 'wb')

simulationStarted = False

config = ConfigParser.RawConfigParser()

config.read('SmartSimSettings.cfg')

amountLeaders = config.getint('Settings', 'amountLeaders')

amountAgents = config.getint('Settings', 'amountAgents')

ubikSimServer = config.get('Settings', 'ubikSimServer')

meshScenario = config.get('Settings', 'meshScenario')

modeSimulation = 'bmlRoute'

print "|--|"

print "| Starting SmartSim |"

print "|--|"

print ""

scene.addAssetPath('script', 'scripts')

scene.loadAssets()

scene.run('configureModule.py')

scene.run('agentsCreationModule.py')

scene.run('tools.py')

scene.run('connectionsModule.py')

scene.run('scenarioModule.py')

scene.run('locomotionModule.py')

print "Initiating Scene"

ConfigureModule().init()

print "Initiating global variables"

ConfigureModule().initGlobalVariables(amountAgents)

74

4.8. USE CASES

print "Setting scene limits"

vectorLimits = ConfigureModule().autoSetLimits(ubikSimServer)

xLimitScene = vectorLimits[0]

yLimitScene = vectorLimits[1]

ConfigureModule().setLimits(xLimitScene, yLimitScene)

print "Setting scenario"

ScenarioModule().addScenario(meshScenario)

ScenarioModule().addEmergency(ubikSimServer)

print "Creating agents"

AgentsCreationModule().settleAgents(amountLeaders, ubikSimServer)

for i in range (amountLeaders):

leaderName = ('Agent%s' % i)

leader = scene.getCharacter(leaderName)

leaderPosition = leader.getPosition()

for j in range (amountAgents):

xLeader = leaderPosition.getData(0)

yLeader = leaderPosition.getData(2)

followerPosition = SrVec(xLeader + (j+1)*0.5, 0, yLeader + (j)*0.5)

AgentsCreationModule().addAgent((leaderName+'%s' %j), followerPosition)

print "Configuring camera settings"

cameraCenter=ConfigureModule().autoSetCamera(amountLeaders)

cameraEye = [cameraCenter[0], 10, cameraCenter[2]+10]

cameraPosition = cameraEye

ConfigureModule().camera(cameraEye, cameraCenter, cameraPosition)

print "Getting routes"

ConnectionsModule().initSteps(amountAgents)

steerManager = scene.getSteerManager()

steerManager.setEnable(False)

steerManager.setEnable(True)

amountFollowers = amountAgents

amountAgents = amountLeaders

print "Scene settled"

scene.removeScript('locomotion')

locomotion = LocomotionModule()

75

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

scene.addScript('locomotion', locomotion)

def play():

LocomotionModule().playSimulation()

def stop():

LocomotionModule().finishSimulation()

The main module is pretty similar to the last case. However, some notable changes had

been applied. We use another variable, amountLeaders, that sets the number of leaders

that steer the groups. The variable amountAgents is used to set the number of agents that

every group has. In this module the agents that conform the groups are created using the

functions of the Agents Creation Module.

4.8.3.4 Simulation

Our agents follow their leader to the exit. They will follow the same path, but only the

leader is given a path from UbikSim and the others will follow him.

After stopping the simulation we will get a results file. We only get the results for the

leader.

Listing 4.9: Crowd case results file example

Agent0 succesfully exited the building

Agent exited the building in 43.6237959862 seconds

The figures 4.12, 4.13, 4.14, 4.15 and 4.16 show us some important moments of our

simulation progress.

76

4.8. USE CASES

Figure 4.12: The simulation loaded

77

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.13: Starting the simulation

78

4.8. USE CASES

Figure 4.14: The agents escaping

79

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.15: The agents have reached the final position

80

4.8. USE CASES

Figure 4.16: Stopping the simulation

81

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

4.8.4 Social simulator

4.8.4.1 Overview

We have developed a simulator with multiple characters. So it is time for us to develop

a more complex simulator. We have managed a few characters paths and many agents

followed these paths. So, introducing more paths and managing them seems to be the next

logical step in developing our simulator.

This case fulfills the objectives of the MOSI-AGIL project. We retrieve our paths from

UbikSim and use SmartBody as our graphic interface.

4.8.4.2 Setting the scene

As in the previous cases, we implement the configuration options in the configuration file.

We disable the amountLeaders option we used in the previous case, as we have abandoned

the leader role we used in it.

Nevertheless, we have not used the type character options we can configure in our file.

This option is not implemented in this case yet. All our agents are modelled after the

default character we used in the previous cases.

We must set the characters files and the scenario in their paths, as we do in the previous

cases.

The configuration file we used is similar to:

Listing 4.10: Social simulator case main module

[Settings]

ubikSimServer= localhost:8080

meshScenario= ETSIT.obj

modeSimulation= gettingSteps

amountAgents=15

4.8.4.3 Main module

import io

import httplib

import time

import ConfigParser

82

4.8. USE CASES

import math

import json

agentStep = []

inside = []

firstStep = []

timeStart = []

timeStop = []

results = io.open('SmartSimResults', 'wb')

simulationStarted = False

config = ConfigParser.RawConfigParser()

config.read('SmartSimSettings.cfg')

amountAgents = config.getint('Settings', 'amountAgents')

ubikSimServer = config.get('Settings', 'ubikSimServer')

meshScenario = config.get('Settings', 'meshScenario')

modeSimulation = config.get('Settings', 'modeSimulation')

print amountAgents

print ubikSimServer

print meshScenario

print modeSimulation

print "|--|"

print "| Starting SmartSim |"

print "|--|"

print ""

scene.addAssetPath('script', 'scripts')

scene.loadAssets()

scene.run('configureModule.py')

scene.run('agentsCreationModule.py')

scene.run('tools.py')

scene.run('connectionsModule.py')

scene.run('scenarioModule.py')

scene.run('locomotionModule.py')

print "Initiating Scene"

ConfigureModule().init()

print "Initiating global variables"

83

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

ConfigureModule().initGlobalVariables(amountAgents)

print "Setting scene limits"

vectorLimits = ConfigureModule().autoSetLimits(ubikSimServer)

xLimitScene = vectorLimits[0]

yLimitScene = vectorLimits[1]

ConfigureModule().setLimits(xLimitScene, yLimitScene)

print "Setting scenario"

ScenarioModule().addScenario(meshScenario)

ScenarioModule().addEmergency(ubikSimServer)

print "Creating agents"

AgentsCreationModule().settleAgents(amountAgents, ubikSimServer)

print "Configuring camera settings"

cameraCenter=ConfigureModule().autoSetCamera(amountAgents)

cameraEye = [cameraCenter[0], 30, cameraCenter[2]+40]

cameraPosition = cameraEye

ConfigureModule().camera(cameraEye, cameraCenter, cameraPosition)

print "Getting routes"

ConnectionsModule().initSteps(amountAgents)

print 'Steering'

steerManager = scene.getSteerManager()

steerManager.setEnable(False)

steerManager.setEnable(True)

print "Scene settled"

def play():

LocomotionModule().playSimulation()

def stop():

LocomotionModule().finishSimulation()

def createAgent(name, x, y):

AgentsCreationModule().addAgent(name, SrVec(x, 0, y))

scene.removeScript('locomotion')

locomotion = LocomotionModule()

scene.addScript('locomotion', locomotion)

84

4.8. USE CASES

The main module is similar to previous ones. However, there are notable differences.

The agents creation is similar to the one character case, nevertheless, the amount of agents

is retrieved from the configuration file. A function to ease the agents creation process is

created.

4.8.4.4 Simulation

Every character follows his own path and has his own initial position. When the character

arrives at its final position, he stays there.

We can retrieve the results in a file as in the previous cases.

Listing 4.11: Social simulator results file example

Agent10 succesfully exited the building

Agent exited the building in 16.9189949036 seconds

Agent13 succesfully exited the building

Agent exited the building in 36.6269879341 seconds

Agent12 succesfully exited the building

Agent exited the building in 39.6204659939 seconds

Agent8 succesfully exited the building

Agent exited the building in 40.1318058968 seconds

Agent7 succesfully exited the building

Agent exited the building in 62.198641777 seconds

Agent6 succesfully exited the building

Agent exited the building in 85.1019399166 seconds

Agent3 succesfully exited the building

Agent exited the building in 89.0953888893 seconds

Agent5 succesfully exited the building

Agent exited the building in 97.0570399761 seconds

Agent4 succesfully exited the building

Agent exited the building in 116.99630785 seconds

Agent9 succesfully exited the building

Agent exited the building in 123.446609974 seconds

Agent2 succesfully exited the building

Agent exited the building in 138.223900795 seconds

Agent1 succesfully exited the building

Agent exited the building in 140.211885929 seconds

The Figures 4.17, 4.18, 4.19, 4.20 and 4.21 show us some important moments of our

simulation. Figures 4.22 and 4.23 show us how to add a character to the simulation.

85

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.17: The simulation loaded

86

4.8. USE CASES

Figure 4.18: Starting the simulation

87

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.19: The agents escaping

88

4.8. USE CASES

Figure 4.20: The agents have reached the final position

89

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.21: Stopping the simulation

90

4.8. USE CASES

Figure 4.22: Creating an agent

91

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.23: The agent created

92

4.8. USE CASES

4.8.5 Social simulator with emotions

4.8.5.1 Overview

We have used BML for moving our agents in the previous cases. However, using BML only

for this would be a waste, as we can take advantage of several other functions of agents

modelling. The big amount of emotions the agents can represent that we can trigger using

BML can be used to model the human behavior in our simulator.

Giving our agents the ability to cry when they feel danger or to run when they are close

to the emergency is a step ahead for our simulator. Using BML we can design behaviors as

close to reality as we want.

So, it is clear that the evolution of our project is related to an extensive use of BML to

represent with more realism the human behavior in an emergency situation. So, this stage

of the simulator is focused in developing that.

4.8.5.2 Setting the scene

We use the same configuration file we used in the previous cases. The configuration step is

the same than in the previous case, as the differences are managed in the main module.

As in previous cases, we have to set our files in their correct paths.

4.8.5.3 Main module

Listing 4.12: Social simulator with emotions case main module

import io

import httplib

import time

import ConfigParser

import math

import json

agentStep = []

inside = []

firstStep = []

timeStart = []

timeStop = []

93

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

typesCharacters=[]

results = io.open('SmartSimResults', 'wb')

behaviors = True

simulationStarted = False

config = ConfigParser.RawConfigParser()

config.read('SmartSimSettings.cfg')

amountAgents = config.getint('Settings', 'amountAgents')

ubikSimServer = config.get('Settings', 'ubikSimServer')

meshScenario = config.get('Settings', 'meshScenario')

modeSimulation = 'gettingSteps'

print amountAgents

print ubikSimServer

print meshScenario

print modeSimulation

print "|--|"

print "| Starting SmartSim |"

print "|--|"

print ""

scene.addAssetPath('script', 'scripts')

scene.loadAssets()

scene.run('configureModule.py')

scene.run('agentsCreationModule.py')

scene.run('tools.py')

scene.run('connectionsModule.py')

scene.run('scenarioModule.py')

scene.run('locomotionModule.py')

print "Initiating Scene"

ConfigureModule().init()

print "Initiating global variables"

ConfigureModule().initGlobalVariables(amountAgents)

print "Setting scene limits"

vectorLimits = ConfigureModule().autoSetLimits(ubikSimServer)

xLimitScene = vectorLimits[0]

yLimitScene = vectorLimits[1]

94

4.8. USE CASES

ConfigureModule().setLimits(xLimitScene, yLimitScene)

print "Setting scenario"

ScenarioModule().addScenario(meshScenario)

ScenarioModule().addEmergency(ubikSimServer)

positionEmergency=ConnectionsModule().getUbikSimEmergency(ubikSimServer)

print "Creating agents"

AgentsCreationModule().settleAgents(amountAgents, ubikSimServer)

print "Configuring camera settings"

cameraCenter=ConfigureModule().autoSetCamera(amountAgents)

cameraEye = [cameraCenter[0], 30, cameraCenter[2]+40]

cameraPosition = cameraEye

ConfigureModule().camera(cameraEye, cameraCenter, cameraPosition)

print "Getting routes"

ConnectionsModule().initSteps(amountAgents)

print 'Steering'

steerManager = scene.getSteerManager()

steerManager.setEnable(False)

steerManager.setEnable(True)

print "Scene settled"

def play():

LocomotionModule().playSimulation()

def stop():

LocomotionModule().finishSimulation()

def createAgent(name, x, y):

AgentsCreationModule().addAgent(name, SrVec(x, 0, y))

scene.removeScript('locomotion')

locomotion = LocomotionModule()

scene.addScript('locomotion', locomotion)

This module is pretty similar to the simulator one. The main differences is setting true

the ’behaviors’ flag.

95

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

4.8.5.4 Simulation

In previous stages of our simulator, our agents acted as robots. They did not express any

emotion or reacted to the situations they found in their paths. In this stage, we see our

agents as living beings. They react to several stimulus, as danger or relieve when they arrive

to a safe position.

The reactions we can find are such as expressing fear when in danger or happiness when

they reach a safe place.

As in previous cases, we can retrieve the results.

The Figures 4.24 and 4.25 show us the emotions our agents can express.

96

4.8. USE CASES

Figure 4.24: An agent expressing fear

97

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.25: An agent expressing happiness

98

4.8. USE CASES

4.8.6 Social simulator with character types

4.8.6.1 Overview

In the previous stages of our simulator, we have only one character type. Every character

is modelled after this kind and there are no differences between them. Everyone has the

same behaviour and reactions to the situations.

However, we do not find this in a real situation. In the real world, everyone reacts in

his own different way. Everyone has his own behaviour. So, in that way, our simulator does

not seem really accurate.

So, a logical stage in our simulator development should be the creation of more profiles

of characters. These characters should be selected by the users and should have their own

behaviours.

4.8.6.2 Setting the scene

We set our scene using our configuration file. In this file we add a new option that was

disabled in the previous versions of the simulator. We add a new section in where we

introduce the types of characters we are going to use in our simulation. The main module

reads the types and if they are defined in our model, they are created.

Our configuration files would be similar to

Listing 4.13: Social simulator with character types configuration file example

[Settings]

ubikSimServer= localhost:8080

meshScenario= ETSIT.obj

modeSimulation= gettingSteps

amountAgents=15

[Types]

rachel= 10,2,5

We are indicating that the agents 10, 2 and 5 are the ‘rachel’ type characters.

4.8.6.3 Main module

99

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Listing 4.14: Social simulator with character types main module

import io

import httplib

import time

import ConfigParser

import math

import json

agentStep = []

inside = []

firstStep = []

timeStart = []

timeStop = []

typeCharacterDict = {}

results = io.open('SmartSimResults', 'wb')

simulationStarted = False

config = ConfigParser.RawConfigParser()

config.read('SmartSimSettings.cfg')

amountAgents = config.getint('Settings', 'amountAgents')

ubikSimServer = config.get('Settings', 'ubikSimServer')

meshScenario = config.get('Settings', 'meshScenario')

modeSimulation = config.get('Settings', 'modeSimulation')

typesCharacters = config.options('Types')

for typeCharacter in typesCharacters:

charactersInType = config.get('Types',typeCharacter)

charactersInType = [int(n) for n in charactersInType.split(',')]

typeCharacterDict[typeCharacter] = charactersInType

print "|--|"

print "| Starting SmartSim |"

print "|--|"

print ""

scene.addAssetPath('script', 'scripts')

scene.loadAssets()

scene.run('configureModule.py')

scene.run('agentsCreationModule.py')

100

4.8. USE CASES

scene.run('tools.py')

scene.run('connectionsModule.py')

scene.run('scenarioModule.py')

scene.run('locomotionModule.py')

print "Initiating Scene"

ConfigureModule().init()

print "Initiating global variables"

ConfigureModule().initGlobalVariables(amountAgents)

print "Setting scene limits"

vectorLimits = ConfigureModule().autoSetLimits(ubikSimServer)

xLimitScene = vectorLimits[0]

yLimitScene = vectorLimits[1]

ConfigureModule().setLimits(xLimitScene, yLimitScene)

print "Setting scenario"

ScenarioModule().addScenario(meshScenario)

ScenarioModule().addEmergency(ubikSimServer)

print "Creating agents"

AgentsCreationModule().settleAgents(amountAgents, ubikSimServer)

print "Configuring camera settings"

cameraCenter=ConfigureModule().autoSetCamera(amountAgents)

cameraEye = [cameraCenter[0], 30, cameraCenter[2]+40]

cameraPosition = cameraEye

ConfigureModule().camera(cameraEye, cameraCenter, cameraPosition)

print "Getting routes"

ConnectionsModule().initSteps(amountAgents)

print 'Steering'

steerManager = scene.getSteerManager()

steerManager.setEnable(False)

steerManager.setEnable(True)

print "Scene settled"

def play():

LocomotionModule().playSimulation()

def stop():

101

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

LocomotionModule().finishSimulation()

def createAgent(name, x, y, *characterType):

for character in characterType:

characterType = character

AgentsCreationModule().addAgent(name, SrVec(x, 0, y), characterType)

scene.removeScript('locomotion')

locomotion = LocomotionModule()

scene.addScript('locomotion', locomotion)

The module is similar to previous modules but in this case we read the Types options

to create the characters.

4.8.6.4 Simulation

As we can see, we do not only create one type of characters. We add a female type character.

This character has her own behaviour. We can select the type of the character using the

configuration file or as we create it.

The Figures 4.26, 4.27 and 4.28 show us some important moments in our simulation.

Figures 4.29 and 4.30 show us how to add characters to the simulation.

102

4.8. USE CASES

Figure 4.26: A ’rachel’ type character

103

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.27: The agent escaping

104

4.8. USE CASES

Figure 4.28: The agents have reached the final position

105

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

Figure 4.29: Creating an agent of type ’rachel’

106

4.8. USE CASES

Figure 4.30: The agent created

107

CHAPTER 4. PROTOTYPE AND EXAMPLE USAGE

4.9 Conclusions

In this chapter we have analysed the cases we have developed. Developing these cases has

helped us in learning not only the SmartBody usage but BML also.

The modularity of our architecture allowed us to create a wide range of simulators

making little changes in our main module, which enhances the user experience. We could

evolve our simulator from the first stage to a more complex one in the last stage.

Taking these cases as an example, the user would be able to develop his own simulator

with little effort.

108

CHAPTER5
Conclusions and future lines

In this chapter we will describe the conclusions extracted from this project, the achieve-

ments and thinkings about future work.

109

CHAPTER 5. CONCLUSIONS AND FUTURE LINES

110

5.1. CONCLUSIONS

5.1 Conclusions

Using UbikSim and SmartBody in a combined effort, we have created a powerful graphic

interface for a social simulator of evacuation plans, SmartSim.

This project allowed us to interact with social simulators. We learned about their

functionalities and how they operate. We needed to know they well in order to develop a

graphic interface for one.

We learned to use tools like UbikSim and SmartBody creating the connections between

them. They were very useful as they proved very accurate for the purposes we wanted them

to accomplish. We learned how to take advantage of the most useful functionalities of them

and we created an architecture that could make them interoperate.

We applied our knowledge in systems architecture to design our architecture. We created

our project with a high modularity as parts of it could be used in future developments. This

feature made us possible to develop a wide variety of simulators to highlight the possibilities

of the system. The functionalities of the modules had been well defined in this documents

and any user can take advantage of them to develop his own simulator without caring for

most of the harshest parts.

5.2 Achieved goals

Create an scene This project has provided facilities for creating scenarios, that can be

seamless exported to UbikSim and SmartBody. These scenarios can be designed highly

detailed. The scenario creation process can be accomplished easily. We could also get

the emergency position and represent it. This is described in Chapter 4.2.

Integrating UbikSim and SmartBody We can create an interface that allowed us the

connections between SmartBody and UbikSim. In this interface we make the conver-

sions between SmartBody and UbikSim standards, they do not use the same mea-

surement units. This is detailed in Chapter 3.

Configuration file Our user can configure the simulation with editing a simple text file.

The simulators created can be configured with a good variety of options. This allows

us to test many cases without editing our simulators. This is explained in Chapter

4.3.

Create an agent Given its position, we can create an agent of our simulation. The agent

111

CHAPTER 5. CONCLUSIONS AND FUTURE LINES

is very detailed both in appearance and behavior. A wide variety of animations can

be performed by him. All of these can be performed using BML commands. This is

described in Chapter 4.8.2.

Directing the agent to the exit We can retrieve the path to the exit of the building

and steer the created agent to it. Using this feature we can create our social simulator

of evacuation plans. The agent is steered using BML commands. This is detailed in

Chapter 4.8.2.

Extending the number of agents We can extend the number of characters from our

initial approach of only one character. We took the positions and paths and created

our agents recursively. We only have to indicate the amount of agents we want to add

to our simulation. This is further explained in Chapters 4.8.3 and 4.8.4.

Giving emotions to agents We managed to make our agents able to express emotions

and a variety of behaviours. We achieved to give our agents a better approach to the

human behaviour. We got a more realistic simulator. This is explained in Chapter

4.8.5.

Extending the types of agents We wanted to add some variety to our agents. We de-

veloped more types of characters with their own set of animations and behaviours.

The type of the characters can be selected by the user. This is explained in Chapter

4.8.6.

5.3 Future work

There are several lines than can be followed to continue and extend features of this work.

In the following points some fields of study or improvement are presented to continue

the development.

• We could develop a graphic interface for the scene control. Although the control

has been simplified creating functions in the main module that execute functions in

other modules, we still have to call python functions in the Commands Window of

SmartBody Graphical User Interface. The user can make mistakes while introducing

the commands. Pushing a button to play or stop the scene offers no possibilities to

mistakes.

• Although SmartBody Graphic Interface offers a very good outcome, we could integrate

SmartBody with a graphical engine such as Unity. The steps we must follow to

112

5.3. FUTURE WORK

achieve the integration are described in the SmartBody manual. All the SmartBody

functionalities could be exported, as our project would be.

• SmartBody has a mobile version. It is simpler than the desktop SmartBody, but using

it could be useful for creating a simulator interacting with the position of the user,

using the GPS of the mobile phone.

• SmartBody also has a web version in development. Currently, it seems to be broken

as its development has been started recently. However, using a fully developed version

would allow us to have a web infrastructure combining it with our UbikSim webapp.

• Although we have used SmartBody in a indoor case, it can be used in a wide range of

applications. BML provides us a very friendly and powerful way to control a character.

SmartBody can be used in many social simulators.

113

CHAPTER 5. CONCLUSIONS AND FUTURE LINES

114

Bibliography

[1] R. Axelrod, “Advancing the art of simulation in the social sciences,” Japanese Journal for

Management Information System, vol. 12, no. 3, 2003.

[2] C. Sansores and J. Pavón, “Simulación social basada en agentes,” Revista Iberoamericana de

Inteligencia Artificial, no. 25, pp. 71–78, 2005.

[3] “Mosi-agil project website.” http://www.gsi.dit.upm.es/mosi/.

[4] S. Kopp, B. Krenn, S. Marsella, A. N. Marshall, C. Pelachaud, H. Pirker, K. R. Thórisson, and

H. Vilhjálmsson4, “Towards a common framework for multimodal generation: The behavior

markup language,” 2006.

[5] G. van Rossum, The Python Language Reference. Python Software Foundation.

[6] J. A. Bot́ıa, P. Campillo, F. Campuzano, and E. Serrano, “UbikSim website.” https://

github.com/emilioserra/UbikSim/wiki.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification. Sun Microsys-

tems.

[8] “Sweet home 3d website.” http://www.sweethome3d.com/.

[9] S. Luke, G. C. Balan, and L. Panait, “Mason: A java multi-agent simulation library,” 2003.

[10] E. Serrano and J. Botia, “Validating ambient intelligence based ubiquitous computing systems

by means of artificial societies,” Information Sciences, vol. 222, no. 0, pp. 3 – 24, 2013. Including

Special Section on New Trends in Ambient Intelligence and Bio-inspired Systems.

[11] P. Davidsson, “Multi agent based simulation: Beyond socialsimulation,” 2000.

[12] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and J. Cowan, “Extensible

markup language (xml) 1.1 (second edition),” second edition of a recomendation, W3C, Sept.

2006. https://www.w3.org/TR/xml11/.

[13] J. Cassell, J. Sullivan, S. Prevost, and E. Churchill, Embodied Conversational Agents. The MIT

Press, 2000.

[14] A. van Kesteren, A. Gregor, Ms2ger, A. Russell, and R. Berjon, “W3c dom4,” first edition of

a recomendation, W3C, Nov. 2015. https://www.w3.org/TR/dom/.

[15] “httplib module.” https://docs.python.org/2/library/httplib.html.

[16] “json module.” https://docs.python.org/2/library/json.html.

115

http://www.gsi.dit.upm.es/mosi/
https://github.com/emilioserra/UbikSim/wiki
https://github.com/emilioserra/UbikSim/wiki
http://www.sweethome3d.com/
https://docs.python.org/2/library/httplib.html
https://docs.python.org/2/library/json.html

BIBLIOGRAPHY

[17] “The javascript object notation (json) data interchange format, rfc7159,” tech. rep., Internet

Engineering Task Force, Mar. 2014. https://tools.ietf.org/html/rfc7159.

[18] “math module.” https://docs.python.org/2/library/math.html.

[19] “io module.” https://docs.python.org/2/library/io.html.

[20] “Configparser module.” https://docs.python.org/2/library/configparser.

html.

[21] “Wavefront files formats, version 4.0 rg-10-004,” tech. rep., Wavefront Technologies Inc., 1993.

[22] M. Barnes and E. L. Finch, “Collada – digital asset schema release 1.5.0,”

specification, Sony Computer Entertainment and Khronos Group, Apr. 2008.

https://www.khronos.org/files/collada spec 1 5.pdf.

[23] “Smartbody python api.” http://smartbody.ict.usc.edu/HTML/smartbody.html.

[24] P. Davidsson, “Agent based social simulation: A computer science view,” Journal of Artificial

Societies and Social Simulation vol. 5, no. 1, vol. 5, no. 1, 2002.

[25] E. Aarts and R. Wichert, Technology Guide: Principles – Applications – Trends, ch. Ambient

intelligence, pp. 244–249. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[26] M. Thiebaux, S. Marsella, A. N. Marshall, and M. Kallman, “Smartbody: Behavior realization

for embodied conversational agents,” 2013.

116

https://docs.python.org/2/library/math.html
https://docs.python.org/2/library/io.html
https://docs.python.org/2/library/configparser.html
https://docs.python.org/2/library/configparser.html
http://smartbody.ict.usc.edu/HTML/smartbody.html

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Context
	Social simulation
	The Mosi-Agil project

	Project objectives
	Structure of this document

	Enabling Technologies
	Overview
	UbikSim
	Overview
	Simulation controls
	UbikSim MOSI-Agil
	UbikSim editor

	BML
	Introduction
	BML Messaging Architecture
	The BML Realizer
	BML Request Syntax

	Python
	Python modules

	SmartBody
	Creating a Character
	Animating a Character
	Python Scripts Usage
	BML Usage
	BML Creator

	Conclusions

	Architecture
	Introduction
	Social Simulator
	Graphical User Interface

	SmartSim Architecture
	Main Module - SmartSim.py
	Configuration module - configuremodule.py
	Scenario module - scenarioModule.py
	Agents creation module - agentsCreationModule.py
	Connections Module - connectionsModule.py
	Tools Module - toolsModule.py
	Locomotion Module - locomotionModule.py

	Conclusions

	Prototype and example usage
	Problem and scenario
	Map creation
	Setting the simulation
	Running our simulation
	Simulation Modes
	Controlling the scene
	Results
	Use cases
	Introduction
	Agent Escaping
	Overview
	Setting the simulation
	Main module
	Simulation

	Crowd Escaping
	Overview
	Setting the scene
	Main module
	Simulation

	Social simulator
	Overview
	Setting the scene
	Main module
	Simulation

	Social simulator with emotions
	Overview
	Setting the scene
	Main module
	Simulation

	Social simulator with character types
	Overview
	Setting the scene
	Main module
	Simulation

	Conclusions

	Conclusions and future lines
	Conclusions
	Achieved goals
	Future work

	Bibliography

